Vintage radio Sonos hack

by Thomas M



Overview

Introducing the Tandberg Sølvsuper 10 radio, a product of the Scandinavian Hi-Fi golden age. Sadly, after decades in storage, the huge variable capacitor inside has seized from corrosion and the radio was beyond repair.

So, what to do? Can this piece of 60s design be refurbished and made useful in the world of Internet of Things?

What to do

He made this product as the following steps.

  • Lighting
  • Rotary Encoders
  • Stepper Moter
  • Main Board
  • Ethernet and USB

Demo Movie

Learn More

Goto Original

 

저작자 표시 동일 조건 변경 허락
신고
Creative Commons License
블로그 이미지

밤소 MidnightCow

위즈네트 칩(W5300, W5200, W7100, W7500) 개발자

Russound RNET to Sonos Bridge (Arduino MEGA) – Part 2

by DannyMav @Mavromatic



Overview

While it was possible to use an Arduino duemilanove (Atmel 328 chipset) for this project (See Part 1), He was really limited due to the 2K of RAM. It was fun trying to optimize code to get things to run in that amount of memory, however, it caused me to not be able to expand on functionality and features. He has upgraded the project to an Arduino MEGA (Atmel 1280 chipset). This platform gives him up to 8K of RAM — which should be more than enough memory (famous last words).
A lot of people have asked him to explain what exactly he’s doing with the Arduino. It’s pretty simple. First, He’s using a RS232 shield (not shown) to capture RS232 commands from the Russound Controller. When a key is pressed on the Russound keypads He read the RS232 data and either ignore or react to the events. Currently, He’s looking for +, -, Next, Previous, Play/Pause, Menu events. He plans on using the Menu button to offer deeper content browsing menus (need to sniff the RS232 or wait for Russound to publish protocol). The + & – buttons will allow to scroll playlists and the rest of the transport buttons are self explanatory.

  • Example RNET Next Track Event
F0 0 7D 7 0 0 7F 5 2 1 0 2 1 0 E 0 0 1 7 0 1 2A F7

Since the Sonos is a uPnP based system there is no IR or way to traditionally control it. Everything needs to be done via HTTP calls. He’s using an Ethernet Shield to translate the RS232 events to uPnP messages. The biggest challenge has been parsing the huge amounts of VERY VERBOSE SOAP-based notification messages. He parses the data real time, looking for strings that He want to store (things like playstate and metadata).
To make matters worse, Sonos is URL encoding XML data inside of an XML structure. So writing a simple XML parser is not possible. You have to look for things like &lt; for a less-than bracket (<). There were times I wanted to scrap the whole project because of this due to the limited RAM and string utilities — it really makes things a lot harder to deal with.

  • Example of nested URL encoded XML
&lt;Event xmlns="urn:schemas-upnp-org:metadata-1-
0/AVT/" xmlns:r="urn:schemas-rinconnetworks-com:metadata-10/"&gt;
&lt;InstanceID val="0"&gt;&lt;TransportState val="PLAYING"/ 

Demo Movie

Learn More

Goto Original


저작자 표시 동일 조건 변경 허락
신고
Creative Commons License
블로그 이미지

밤소 MidnightCow

위즈네트 칩(W5300, W5200, W7100, W7500) 개발자

Fritz! Boy: Serial communication between Arduino and Gameboy (GBDK)

by Marcel Imig



Overview

This project describes both the communication between an Arduino Mega and a UPNP capable router, as well as the serial communication between Gameboy and Arduino. This is a contribution for the “Pimp your Fritz!” Competition of the Maker Faire 2015 in Berlin. The conditions of participation are here. The finalists are on the site of AVM. The winners at Heise.

Required Component :

  • Gameboy (DMG) oder Gameboy Color 30 €
  • USB 64m Smart card (z.B. von hier) 50 €
  • Gameboy Link cabel 5 €
  • Arduino Mega 15 €
  • Arduino Ethernet Shield 10 €
  • Housing (Optional) 5 € ~100 €

How to Run

After the Arduino Mega microcontroller has received an IP address from the Fritz! Box, it sends a SOAP request to its default gateway. In this query, he queries the properties of the WAN interface and returns the maximum up- and download bandwidth (“NewLayer1UpstreamMaxBitRate” and “NewLayer1DownstreamMaxBitRate”). Next, he intermittently polls the current bandwidth usage every three seconds (“NewByteReceiveRate” and “NewByteSendRate”). The collected values ​​are converted into megabits and transferred to the gameboy every second via the serial interface. A game is played on the game board’s cartridge, which listens on the serial port and displays the last 50 received values on a scale.

Learn More

Goto Original, Language : German


 

저작자 표시 동일 조건 변경 허락
신고
Creative Commons License
블로그 이미지

밤소 MidnightCow

위즈네트 칩(W5300, W5200, W7100, W7500) 개발자

Arduino + WebSockets II

by Daniel Garrido



Overview

These postings show how to use WebSockets to display data taken from Arduino and broadcast it to any Browser with WebSocket support.

This project describes how to use WebSockets to display data taken from Arduino and broadcast it to any Browser with WebSocket support. Test your browser here: http://websocket.org/echo.html

Please read the first part of this serie: http://yopero-tech.blogspot.com/2012/02/arduino-websockets.html

First of all we need to decide what data to display and what to control in Arduino from the web page .

In this example I am going to control 3 remote controlled relays that you can buy at your hardware store and I want to display the values from 2 temperature sensors.(DS18S20)

3 main parts of software & hardware(Arduino Board)

This project is composed out of 3 main parts of software apart from the hardware(Arduino Board):

  1. WebSocket Server:
    • Python
    • Autobahn
      • Twisted
        • PySerial
  2. MCU (Micro Controller Unit)
    • Arduino Board(Vinciduino in my case).
    • Arduino IDE or AVR studio.
  3. Client:
    • Any web server, I use xampp or python to test as localhost

Demo Movie

Learn More

Goto Original


저작자 표시 동일 조건 변경 허락
신고
Creative Commons License
블로그 이미지

밤소 MidnightCow

위즈네트 칩(W5300, W5200, W7100, W7500) 개발자

Cosm and TMP100

by Fork Robotics



Overview

These posting point out collecting data. Also, this unwieldy mass of data needs to be logged, processed, stored and displayed in a reasonable way for it to be usable. Then, show how to create a feed and upload data reading from sensor an to Cosm via an Arduino Ethernet Shield.

All of the devices around us are starting to become data collection points. Every minute of every day many data points are generated. This unwieldy mass of data needs to be logged, processed, stored and displayed in a reasonable way for it to be usable. The question becomes how to do this. One solution for the DIY community is Cosm (formerly Pachub) that allows us to do just that for free. In this article I’ll show you how to setup an account, create a feed and upload temperature readings from an I2C temperature sensor to Cosm via an Arduino Ethernet Shield.

Materials :

  • Cosm Account
  • Arduino and Ethernet Shield or Arduino Ethernet
  • Breadboard and jumper wires
  • tmp100 (or other I2C temperature sensor) on a breakout board

Setup a Cosm Account

Cosm site is changed to Xively.

If you don’t already have one the first thing you need to do is setup a Cosm Account

  1. Go to https://cosm.com
  2. Click the big blue “Get Started” button
  3. Enter an email, username and password then click the “Sign up” button
  4. You’ll get an email with a link to verify your registration
  5. The link will bring you directly into your account
  6. Click on the big plus button
  7. Select Arduino
  8. Give the new feed a title and tags (optional) and press Create
  9. The Cosm Site will give you a sample sketch to upload data. You only need the three lines that start with:
    A. #define APIKEY
    B. #define FEEDID
    C. #define USERAGENT

Learn More

Goto Original

 

저작자 표시 동일 조건 변경 허락
신고
Creative Commons License
블로그 이미지

밤소 MidnightCow

위즈네트 칩(W5300, W5200, W7100, W7500) 개발자

W5500 Ethernet with POE Mainboard SKU: DFR0342

by DFRobot



Overview

The W5500 Ethernet mainboard is the newest member of the DFRobot Ethernet family. It Is a microcontroller based on the ATmega32u4 and W5500 Ethernet chip with the same footprint as an Arduino Leonardo board, as well as being compatible with most Arduino shields and sensors, making it suitable for many kinds of IOT applications. The W5500 chip is a hardwired TCP/IP embedded Ethernet chip that provides easy internet connection for embedded systems. The board has the TCP/IP stack, 10/1000 ethernet MAC and PHY embedded, allowing internet connectivity in the users application using just the board and nothing else. The W5500 Ethernet mainboard uses a high-efficiency SPI protocol which supports a speed of 80MHZ for high speed network communication. In order to reduce power consumption it also includes WOL (wake on LAN) and power down modes. The board can be powered using a regular VIN, or POE as the power supply. It also integrates a power regulation chip that allows it to work under a complex environment.

Specification

  • Microcontroller: Atmel Atmega32u4 (Arduino Leonardo)
  • External Input Voltage Range (recommended): 7V~20V DC
  • External Input Voltage Range (limit): 6-23V
  • POE Input Voltage: 48V AC/DC (802.3af standard PD device)
  • Digital I/O Pins: 20
  • Analog I/O Pins: 6
  • DC Current per I/O Pin: 40 mA
  • Flash Memory: 32 KB (ATmega32u4) (4KB used by bootloader)
  • SRAM: 2 KB (ATmega32u4)
  • EEPROM: 1 KB (ATmega32u4)
  • Clock Speed: 16 MHz
  • PHY: WIZnet W5500
  • PHY Clock Speed: 25MHz
  • Dimension: 73.5 x 53.5x15mm

Learn More

Goto Original


 

저작자 표시 동일 조건 변경 허락
신고
Creative Commons License
블로그 이미지

밤소 MidnightCow

위즈네트 칩(W5300, W5200, W7100, W7500) 개발자

Sensors_Socket_Processing

by Vellamy



Overview

The project presented here it is a TCP/IP socket system between an Arduino Ethernet Shield and a program running in a laptop elaborated by Processing. To demonstrate a total communication between the client and the server of the TCP/IP socket, I’ve designed a program in which the data sensors are represented in the screen and when a button is pushed, the client or the server respond with a light.

The analog signals captured by Arduino are the signal of a potentiometer, a temperature sensor, a humidity air sensor and a soil moisture sensor. Furthermore, I’ve connected to Arduino three buttons in the digital inputs and three led in the digital outputs. On one hand, the information of the sensors is represented by Processing. When a button is pressed, the lamp of the Processing program changes his color. One button is for the red color, other for the yellow color and another for the green color. On the other hand, there are three buttons in the Processing Program. If you press one of them, you switch on a led for a second on the Sensor Shield.

Materials Component name(figures)

  • Arduino Uno and USB wire (1)
  • Arduino Ethernet Shield (1)
  • Ethernet Cat.5 Crosswire (1)
  • Humidity Sensor. 808H5V5 (1)
  • Potentiometer.10k Ohm (1)
  • Temperature Sensor. MCP9700A (1)
  • Soil Moisture Sensor (1)
  • Buttons (3)
  • Res.: 330 Ohm(3), 10k ohm(3)
  • leds: Red(1), Yellow(1), Green(1)

Learn More

Goto Original


TAG : Arduino, Ethernet, Sensor, W5100, Temperature, Humidity, Potentionmeter, Sensing&Gathering

저작자 표시 동일 조건 변경 허락
신고
Creative Commons License
블로그 이미지

밤소 MidnightCow

위즈네트 칩(W5300, W5200, W7100, W7500) 개발자

SparkFun Ethernet Shield Quickstart Guide

by Jimb0



Overview

In this tutorial, we’ll cover how to get up and running with the SparkFun Ethernet Shield. Requirements, hardware, assembly, and programming will all be covered. Follow along, and your Arduino should be skimming Twitter and hosting webpages in no time!

Requirements:

  • Headers (and soldering tools)
  • An Ethernet cable
  • µSD Card (optional)
  • Arduino Development Board
  • Arduino Software

Hardware

  • The SparkFun Ethernet Shield is comprised of two stand-out components - a Wiznet W5100 TCP/IP embedded Ethernet controller and a µSD socket.

    • The W5100 is a powerful little chip, which implements all sorts of complex network protocols - TCP, UDP, ICMP, IPv4, ARP, IGMP, PPPoE, and the physcial Ethernet layer. This alleviates a lot of programming stress on us and memory stress on the Arduino. All of the communication between the W5100 and the Arduino is SPI-based and handled using the Ethernet library, which we’ll discuss in the firmware section below.

    • The W5100 is supported by a number of components - capacitors, a crystal, reset monitors - but most especially an Ethernet jack, actually a MagJack. Inside that little RJ-45 jack are a number of transformers and magnetics required for isolating Ethernet signals (you could say this jack is…more than meets the eye). There are even some LEDs poking out the end.

  • The µSD socket extends near the edge of the shield, where the card should be inserted. The socket sits next to a 74HC4050 (high-to-low level shifter), which handles all of the 5V-to-3.3V voltage shifting (those delicate µSD cards shouldn’t be subjected to 5V signals).

  • Some of the less spectacular components (don’t tell them I said that) on the Ethernet Shield include a reset button, 3.3V regulator, and a number of blinky LEDs. The reset button works just like the one the Arduino itself, though it’ll also reset the W5100. The LEDs include a power indicator LED, as well as a number of status LEDs (Ethernet receive/transmit, collision, and speed) tied to the W5100, which will appear to have a mind of their own.

Learn More

Goto Original


 

 

저작자 표시 동일 조건 변경 허락
신고
Creative Commons License
블로그 이미지

밤소 MidnightCow

위즈네트 칩(W5300, W5200, W7100, W7500) 개발자

Teleduino

by Teleduino



Overview

Teleduino converts your ethernet enabled Arduino into a powerful and versatile tool for interacting with devices over the internet. Not only that, but it makes it quick and easy.

Teleduino is now available for the Arduino Mega range of boards!

Once your Teleduino is configured, it automatically connects itself to the Teleduino server when powered on. The Teleduino server translates instructions received from the internet into actions on the Teleduino device.

Using the Teleduino platform, you can perform the following tasks with your Arduino via the simple web service:

  • Reset, ping, get uptime, get free memory.
  • Define pin modes, set digital outputs, set analog outputs, read digital inputs, read analog inputs, or read all inputs with a single API call.
  • Define up to 2 ‘banks’ (4 for the Mega) of shift registers. Each ‘bank’ can contain up to 32 cascaded shift registers, giving a total of 512 digital outputs (1024 for the Mega).
  • Shift register outputs can be set, or merged, and expire times can be set on merges (you could set an output(s) high for X number of milliseconds).
  • Define, and read and write from serial port (4 for the Mega).
  • Read and write from EEPROM.
  • Define and position up to 6 servos (48 for the Mega).
  • Interface with I2C (TWI) sensors and devices.
  • Set preset values for the above functions, which get set during boot. Preset values are stored in the first 178 bytes of the EEPROM (413 for the Mega).

Documentation

Learn More

Goto Original


 

저작자 표시 동일 조건 변경 허락
신고
Creative Commons License
블로그 이미지

밤소 MidnightCow

위즈네트 칩(W5300, W5200, W7100, W7500) 개발자

Controlling Arduino with iPod touch through WebSocket

by Yoshiyasu SAEKI



Overview

In this post, Author made an application with DeviceMotion Event and WebSocket in iPod touch. WebSocket server is written in Python/Tornado. So WebSocket message should be able to be relayed to other softwares or devices. Author tries to control Arduino device with iPod touch through WebSocket by moving ball in ipodtouch and getting ball data on Matrix LED.

Parts :

  • Matrix LED
  • ipod touch
  • Ehternet Shield
  • Arduino

Demo Movie

Learn More

Goto Original


 

저작자 표시 동일 조건 변경 허락
신고
Creative Commons License
블로그 이미지

밤소 MidnightCow

위즈네트 칩(W5300, W5200, W7100, W7500) 개발자

티스토리 툴바