Cosm and TMP100

by Fork Robotics



Overview

These posting point out collecting data. Also, this unwieldy mass of data needs to be logged, processed, stored and displayed in a reasonable way for it to be usable. Then, show how to create a feed and upload data reading from sensor an to Cosm via an Arduino Ethernet Shield.

All of the devices around us are starting to become data collection points. Every minute of every day many data points are generated. This unwieldy mass of data needs to be logged, processed, stored and displayed in a reasonable way for it to be usable. The question becomes how to do this. One solution for the DIY community is Cosm (formerly Pachub) that allows us to do just that for free. In this article I’ll show you how to setup an account, create a feed and upload temperature readings from an I2C temperature sensor to Cosm via an Arduino Ethernet Shield.

Materials :

  • Cosm Account
  • Arduino and Ethernet Shield or Arduino Ethernet
  • Breadboard and jumper wires
  • tmp100 (or other I2C temperature sensor) on a breakout board

Setup a Cosm Account

Cosm site is changed to Xively.

If you don’t already have one the first thing you need to do is setup a Cosm Account

  1. Go to https://cosm.com
  2. Click the big blue “Get Started” button
  3. Enter an email, username and password then click the “Sign up” button
  4. You’ll get an email with a link to verify your registration
  5. The link will bring you directly into your account
  6. Click on the big plus button
  7. Select Arduino
  8. Give the new feed a title and tags (optional) and press Create
  9. The Cosm Site will give you a sample sketch to upload data. You only need the three lines that start with:
    A. #define APIKEY
    B. #define FEEDID
    C. #define USERAGENT

Learn More

Goto Original

 

블로그 이미지

밤소 MidnightCow

위즈네트 칩(W5300, W5200, W7100, W7500) 개발자

W5500 Ethernet with POE Mainboard SKU: DFR0342

by DFRobot



Overview

The W5500 Ethernet mainboard is the newest member of the DFRobot Ethernet family. It Is a microcontroller based on the ATmega32u4 and W5500 Ethernet chip with the same footprint as an Arduino Leonardo board, as well as being compatible with most Arduino shields and sensors, making it suitable for many kinds of IOT applications. The W5500 chip is a hardwired TCP/IP embedded Ethernet chip that provides easy internet connection for embedded systems. The board has the TCP/IP stack, 10/1000 ethernet MAC and PHY embedded, allowing internet connectivity in the users application using just the board and nothing else. The W5500 Ethernet mainboard uses a high-efficiency SPI protocol which supports a speed of 80MHZ for high speed network communication. In order to reduce power consumption it also includes WOL (wake on LAN) and power down modes. The board can be powered using a regular VIN, or POE as the power supply. It also integrates a power regulation chip that allows it to work under a complex environment.

Specification

  • Microcontroller: Atmel Atmega32u4 (Arduino Leonardo)
  • External Input Voltage Range (recommended): 7V~20V DC
  • External Input Voltage Range (limit): 6-23V
  • POE Input Voltage: 48V AC/DC (802.3af standard PD device)
  • Digital I/O Pins: 20
  • Analog I/O Pins: 6
  • DC Current per I/O Pin: 40 mA
  • Flash Memory: 32 KB (ATmega32u4) (4KB used by bootloader)
  • SRAM: 2 KB (ATmega32u4)
  • EEPROM: 1 KB (ATmega32u4)
  • Clock Speed: 16 MHz
  • PHY: WIZnet W5500
  • PHY Clock Speed: 25MHz
  • Dimension: 73.5 x 53.5x15mm

Learn More

Goto Original


 

블로그 이미지

밤소 MidnightCow

위즈네트 칩(W5300, W5200, W7100, W7500) 개발자

Sensors_Socket_Processing

by Vellamy



Overview

The project presented here it is a TCP/IP socket system between an Arduino Ethernet Shield and a program running in a laptop elaborated by Processing. To demonstrate a total communication between the client and the server of the TCP/IP socket, I’ve designed a program in which the data sensors are represented in the screen and when a button is pushed, the client or the server respond with a light.

The analog signals captured by Arduino are the signal of a potentiometer, a temperature sensor, a humidity air sensor and a soil moisture sensor. Furthermore, I’ve connected to Arduino three buttons in the digital inputs and three led in the digital outputs. On one hand, the information of the sensors is represented by Processing. When a button is pressed, the lamp of the Processing program changes his color. One button is for the red color, other for the yellow color and another for the green color. On the other hand, there are three buttons in the Processing Program. If you press one of them, you switch on a led for a second on the Sensor Shield.

Materials Component name(figures)

  • Arduino Uno and USB wire (1)
  • Arduino Ethernet Shield (1)
  • Ethernet Cat.5 Crosswire (1)
  • Humidity Sensor. 808H5V5 (1)
  • Potentiometer.10k Ohm (1)
  • Temperature Sensor. MCP9700A (1)
  • Soil Moisture Sensor (1)
  • Buttons (3)
  • Res.: 330 Ohm(3), 10k ohm(3)
  • leds: Red(1), Yellow(1), Green(1)

Learn More

Goto Original


TAG : Arduino, Ethernet, Sensor, W5100, Temperature, Humidity, Potentionmeter, Sensing&Gathering

블로그 이미지

밤소 MidnightCow

위즈네트 칩(W5300, W5200, W7100, W7500) 개발자